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Summary. Disease mapping studies summarize spatial and spatiotemporal variations in disease
risk. This information may be used for simple descriptive purposes, to assess whether health targets
are being met or whether new policies are successful, to provide the context for further studies
(by providing information on the form and size of the spatial variability in risk) or, by comparing
the estimated risk map with an exposure map, to obtain clues to aetiology. There are well-known
problems with mapping raw risks and relative risks for rare diseases and/or small areas since
sampling variability tends to dominate the subsequent maps. To alleviate these difficulties a multi-
level modelling approach may be followed in which estimates based on small numbers are ‘shrunk’
towards a common value. In this paper we extend these models to investigate the effects of
inaccuracies in the health and population data. In terms of the health data we consider the effects of
errors that occur due to the imperfect collection procedures that are used by disease registers.
For cancers in particular, this is a major problem, with case underascertainment (i.e. undercount)
being the common type of error. The populations that are used for estimating disease risks have
traditionally been treated as known quantities. In practice, however, these counts are often based on
sources of data such as the census which are subject to error (in particular underenumeration) and
are only available for census years. Intercensual population counts must consider not only the usual
demographic changes (e.g. births and deaths) but migration also. We propose several approaches
for modelling population counts and investigate the sensitivity of inference to the sizes of these
errors. We illustrate the methods proposed using data for breast cancer in the Thames region of the
UK, and we compare our results with those obtained from more conventional approaches.
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1. Introduction

The aims of spatial epidemiological studies include the simple description of geographical
variability in risk, the investigation of the sources of the spatial and non-spatial components of
this variability and cluster investigations, either with or without any specific putative source. To
carry out such studies we require data on health events and on an appropriate ‘denominator’.
The methodology that is used depends on whether exact locations are available (point data) or
whether aggregation has been carried out (count data). Count data are more likely to be
routinely available and it is these that we consider here. In general, each of the health,
population and exposure data may be subject to error. Wakefield and Elliott (1999) have
provided a detailed discussion of the sources of these errors. Errors-in-variables modelling of
exposure data has been considered by various researchers including Bernardinelli et al. (1997)
and Jordan et al. (1997), but inaccuracies in the health and population data have received less
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attention in a disease mapping context. In this paper we consider the modelling and effects of
specific errors that may occur in the health and population data. So far as the health data are
concerned we focus on cancer incidence data and the modelling of inaccuracies that occur in
case registration, e.g. double counting and under-registration. Population information is often
taken from the census (which in the UK is carried out every 10 years). Such data sources only
provide estimates of the population, however; in particular underenumeration (undercount) is a
major problem (Simpson et al., 1995). Here we do not consider underenumeration but, rather,
the problem of dealing with the intercensual years in which populations may change due to
births and deaths and also to migration. The inaccuracies in health and population data are not
likely to be spatially neutral (i.e. the probability of an error is not geographically constant) and
so observed differences in area-specific relative risk estimates may reflect anomalies in the data,
as opposed to real differences. Here we provide models for each of these problems in the
context of a disease mapping study.

The structure of this paper is as follows. In Section 2 we describe the data that we shall use to
illustrate our methods. These data concern the incidence of breast cancer in the Thames region
in the years 1981-1991; in particular we describe the manner of data collection and sources of
error within the health and population data. In Section 3 we present a statistical model that may
be used to analyse areal count data and in Section 4 we extend this model to account for
inaccuracies in the data and carry out several analyses using a range of models. Section 5
considers the effect of introducing spatial effects, and Section 6 contains a concluding discussion.

2. Breast cancer data

We illustrate our methods via a disease mapping study that was carried out to investigate
sources of variability in the relative risk of breast cancer in women aged 15 years and over, at
electoral ward level, in the Thames region of the UK. There are 2136 wards in the study
region with a total of 74875 registered cases over the period 1981-1991.

2.1. Registrations

To motivate our models we briefly review the complex cancer registration system that operates
in England and Wales. Swerdlow (1986) has provided a more detailed description; see also
Gulliford et al. (1993). England and Wales are covered by a number of regional cancer
registries who voluntarily supply the Office for National Statistics (ONS) with cancer regis-
tration data. (During the study period, the ONS were known as the Office of Population
Censuses and Surveys.) Data available for each registration include the cancer site and the
date of birth, sex and postcode of residence (at the time of diagnosis) of the individual. These
data are collected by the registries in a variety of ways. For example some employ peripatetic
clerks, others use hospital record staff to extract data and others rely on the computer systems
of other organizations such as hospitals and pathology laboratories. Only rarely have studies
been carried out to estimate the probability that a new case is registered, i.e. the completeness
(see for example Hawkins and Swerdlow (1992)). Other issues that must be considered include
the accuracy of diagnoses and encoding (including consistency of clerical staff and the effect of
training programmes), late registrations, deletions and amendments, constancy of clinical and
pathological coding and changes in coding systems. Each registry consists of a number of
district health authorities (DHAs) and the aforementioned issues may result in varying
completeness between DHAs, as well as between registries. The DHA effect is more difficult to
model since, although each ward may be mapped to a DHA, wards on the boundary of DHA
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catchment areas may contain populations who attend more than one hospital. Differences in
ascertainment must be addressed in any geographical study since when maps are produced
apparent highs and lows may simply correspond to registration anomalies.

Once the data have been received, the ONS carry out validation and checks for duplicates
before summaries are released. Included in this process is the cross-checking of registrations
with the National Health Service Central Register. In recent years 96% completeness was
found (Office for National Statistics, 1997). All deaths within England and Wales are record-
ed with the ONS and deaths are linked with the registration data.

The proportion of individuals who were recorded by a regional registry as dying of a
particular cancer for whom no other information could be found, the so-called ‘death
certificate only’ (DCO) registrations, provides one indicator of incomplete case ascertainment.

Before 1985, the Thames region comprised three separate registries, namely the North West,
North East and South registries; in 1985 the three registries amalgamated. This amalgamation
led to an overall improvement in the registration process in the Thames region.

One measure of the level of ascertainment is provided by calculating the ratio of mortality
to incidence for a particular cancer site. If all cases are registered (and the deaths are
recorded) then this ratio will approximately equal the probability of death given cancer at a
particular site. For breast cancer this probability is approximately 0.5 (Parkin et al., 1994).
Fig. 1 shows this ratio for each of the three regions of Thames for the study period. We see
that for the North East and North West regions the ratios were in excess of 0.5 before 1985.
This could be due to a change in risk factors or a change in registration procedures. Given the
amalgamation in 1985, the latter possibility seems the more likely explanation.

Swerdlow and dos Santos Silva (1993), in their cancer atlas of England and Wales, used age-
adjusted odds ratios for all cancers except childhood leukaemia to account for case under-
ascertainment. A case—control method was used in which a weighted sample of other cancers was
used as the control group. This method depends on the relative underascertainment within a county
(the areal units at which maps were displayed) compared with the study region being constant across
tumour sites. The weighting procedure ensured that the maximum contribution of any one cancer
site was taken to be less than 7% to avoid controls being dominated by a few common cancers. We
describe a similar method in Section 4. It is more usual for cancer atlases to be produced for
mortality for which, in general, registration problems are less severe. There is still an appreciation of
potential inaccuracies, however; see for example Pickle et al. (1996), pages 3-5.

Breast cancer screening was introduced in 1989 and hence we would expect to see a
subsequent apparent increase in incidence in lower age groups (followed in later years by a
decline in older age groups, assuming approximately constant risk across years). In Fig. 1 we
see that the mortality/incidence ratio drops in 1989 owing to increased incidence.

York et al. (1995) and Bray and Wright (1998) considered the modelling of underascer-
tainment for congenital malformations. The methods described in these papers were developed
for situations in which there were two sources of registration information, however, and so
are not directly applicable here.

2.2. Population counts

So far as population data are concerned the raw census counts are available by ward and by
S-year age bands for 1981 and 1991. For 1991 these census counts have been adjusted by the
‘Estimating with confidence’ project (Simpson et al., 1995) for underenumeration, to move
students from their term time address to their home address and to provide a mid-year
estimate (as opposed to a census date estimate). The resulting counts remain an estimate of
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Fig. 1. Ratio of counts of incidence to counts of mortality for breast cancer for three Thames regions over the
period 1981-1991 (before 1985 there were three separate registries in North West, North East and South
Thames; from 1985 they were amalgamated — if the incidence and mortality data are complete the ratio should be
approximately 0.5): (a) North East Thames region; (b) North West Thames region; (c) South Thames region
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the ‘true’ population but are the best set of counts that are available nationally. In 1981 the
underenumeration at census was estimated to be 0.5% (Office for National Statistics, 1997).
The third set of data that we utilize are the Registrar General’s mid-year estimates for the
years 1982—1990 which are available by 5-year age bands at the level of local authority district
(LAD). There are 96 of these LADs in the Thames region with 845 wards per LAD (median
22). The mid-year estimates roll the 1981 census figures forwards using information on births,
deaths and migration (Office of Population Censuses and Surveys, 1991).

In our disease mapping context, when population data as described above are utilized, we
must consider the following.

(a) The census is not entirely accurate and in particular suffers from underenumeration
which will not be spatially neutral.

(b) For intercensual years the Registrar General’s LAD estimates are not exact, and if
smaller areas than these districts are considered (e.g. wards) then these counts must be
apportioned, introducing further error.

In a health context, migration not only affects the raw counts but also the exposure to area-
defined risk factors that the migrant population experiences. For example, individuals may
be exposed to some source of pollution but then move to another area before the disease
develops, hence diluting the observed effect in the area containing the source of pollution.

We note that the effects of migration will be greatest for small areas; within larger areas
individuals tend to migrate within the same area (Richardson, 1992). So, when disease maps
are examined, interesting features may simply reflect population denominator problems.

3. Basic model

In this section we specify the basic disease mapping model that we utilize. Clayton and
Bernardinelli (1992) and Mollié (1996) have provided reviews of the aims and methodology
of disease mapping. We first establish notation: let V,,, and Y,,, denote respectively the pop-
ulation at risk and the number of registered breast cancer cases in area i, age band a and
calendar year ¢. For the breast cancer data, i therefore indexes the 2136 wards and a the 14 5-

year age bands 15-19, . . ., 80-84 years, plus one age band for those over 84 years old, with ¢
ranging over 1981, . . ., 1991. For rare and non-infectious diseases we may then assume that
Yiat ﬁb POiSSOl’l(N,—a,pm,), (1)

where p,,, is the probability of disease in area i, age group a and calendar year t. We note
that this distributional assumption will often be inaccurate owing to the effect of unmeasured
risk factors which, in particular, will lead to extra-Poisson variability. One method of ack-
nowledging this variability is via the introduction of random effects, as described below.
Model (1) also assumes that the risk for a given age by year stratum is constant within each
area; this is clearly an approximation to the ‘true’ underlying relative risk surface. In
particular, the analysis is open to the possibility of the ecological fallacy in which incorrect
inference is made because an area level relationship is only relevant to the individuals within
that area under very strict conditions (Richardson, 1992). The disease mapping approaches
that are currently available are all vulnerable to this problem, and the possibility of ecological
bias should always be borne in mind at the interpretation stage.
Conventionally it is then assumed that

Piat = eitpa/) (2)
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where p,, are stratum-specific reference rates. These are often estimated marginally from the
whole study region via

ﬁul = Z Yial/z Nial = Y+al/N+al (3)

and are treated as known. Model (2) implies the very strong assumption that the effect of
being in area i in year ¢ is to multiply all the stratum-specific risks by a common relative risk
0,,. For the breast cancer data we assessed this proportionality assumption informally via the
examination of plots of maximum likelihood estimates of p,, versus p, for areas that had
sufficient cases to produce reliable estimates. The relationships were approximately linear in
most areas, suggesting that the proportionality assumption is reasonable for these data.

The Poisson assumption (1) combined with the proportionality assumption (2) then allows
summation over the stratum to give

Y;, ~ Poisson(E;0;,), 4

where Y, = X, Y;,, and
Eil = Z Niatﬁal' (5)

Inaccuracies in the population data will be reflected in the expected numbers E;, both through
the counts for the small areas and the stratum-specific probabilities. The implementation of
model (3)—(5) achieves a significant reduction in the number of data items compared with
model (1). If this is not an issue then the stratum-specific probabilities may be estimated
simultaneously with the small area relative risk estimates (see Clayton (1996)). The maximum
likelihood estimator of the relative risk 6, is the standardized morbidity ratio (SMR) Y,/ E;,.

In disease mapping applications, following Clayton and Kaldor (1987), it has become the norm
to specify a hierarchical model for the data. The expected similarity of relative risks is modelled
via the incorporation of random effects. Specifically the relative risks may be modelled via

log(6;)) = i, + X B +v; (6)

where X; denotes a k x 1 vector of ward level explanatory variables and 3 a k x 1 vector of
regression coefficients, and the v, ~;;p N(0, 02) model global similarity. The introduction of
the random effects v; yields a marginal distribution for Y; that is overdispersed relative to the
Poisson distribution; the parameters v; may be interpreted as due to unmeasured risk factors
that are common to the individuals of area i (but do not have spatial structure). For the
observed explanatory variables, we take X; to be the Carstairs deprivation index (Carstairs
and Morris, 1991) of ward i evaluated in 1991. This index is calculated from census variables
concerning overcrowding, access to a car, the social class of the head of household and
unemployment. These combine to give a univariate continuous measure, with high values
indicating greater deprivation. Using this index we may take some account of socioeconomic
status, which is well known to be a strong predictor of disease (e.g. Jolley et al. (1992)). Since
k =1 in all our models, from this point onwards we drop the transpose on X;.

Besag et al. (1991) suggested that model (6) may be augmented by the addition of random
effects u; that have spatial structure since, in general, we would expect at least some of the
residual risk to exhibit spatial dependence. For now, we do not consider this extension, since
our aim is to illustrate the effects of inaccuracies in the data; however, we return to this point
in Section 5.

A great benefit of model (6) is that it results in relative risk estimates that have ‘borrow-
ed strength’ from the totality of areas and hence are not subject to the great instability
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that raw SMRs based on small expected numbers may exhibit (Clayton and Kaldor,
1987).

A Bayesian approach completes the model by specifying prior distributions for p,, # and
o>. Throughout we have used normal priors N(0, 1000) for fixed effects and gamma priors
Ga(0.5, 0.0005) for random-effects precisions (o, ). For a justification of the latter see Kelsall
and Wakefield (1999). All models were fitted using Markov chain Monte Carlo simulation
algorithms implemented in the WinBUGS software (Spiegelhalter et al., 1998). Posterior
summaries were based on samples of 10000 after discarding a 1000-iteration burn-in, con-
vergence having been checked via an informal assessment of trace and quantile plots.

Depending on the aim of the study, the inference may focus on a variety of parameters.
Ecological correlation studies will focus on the regression parameters (5. To place spatial
epidemiological studies in context we may examine the size of o which corresponds (approx-
imately) to the standard deviation of the residual relative risks exp(v;). We may be interested
in the area level relative risks 6, for allocating health services and investigations of unex-
plained variability will concentrate on the residual relative risks exp(v;).

We first fitted model (3)—(6) separately to the data in the periods 1981-1984 and 1985—
1991, where the E;, have been calculated using a set of age- and calendar-year-specific
probabilities (3) calculated for the whole region using 1981 population census counts for
years before 1986 and 1991 census counts for 1986 onwards. Fig. 2 shows a map of the ratio
of the posterior means of the residual relative risk estimates exp(v;) in the 1981-1984 and
1985-1991 periods for breast cancer by ward in the Thames region. The predominance of
ratios less than 1 in the northern part of the region is likely to be due to the case under-
ascertainment that was seen in Fig. 1 in North Thames before the amalgamation with the
South Thames cancer registry in 1985 (see Section 2.1). Of course without additional infor-
mation it is impossible to determine the extent to which this figure reflects differences in risk
factors that are common to the registries and case underascertainment. The inaccuracies in
the population counts discussed in Section 2.2 may also be having an influence.

Fig. 3(a) displays the residual relative risks exp(v;) for each ward in the 1981-1984 period
plotted against the corresponding estimates in the 1985-1991 period; these were the quantities
whose ratios were displayed in Fig. 2. Although we would expect to see differences in these
two time periods due to changes in the case mix, the lack of consistency between these estim-
ates again suggests that problems in the data may be important here.

4. Extended model

4.1. Registrations
In this section we first describe how we propose to account for case ascertainment problems.
A priori we would expect that the principal differences in ascertainment will occur between
registries though there will be within-registry differences, at the DHA level, as well. Con-
sequently we introduce some new notation: let r[i] and d[i] denote respectively the registry
and DHA within which ward i lies.

To investigate the registry effects as a function of year we fitted the model given by
equations (3)—(5), and replacing equation (6) by

log(0;) = p+ X8+ Mige T Vi (7

where v; ~;p N(0, o2) and the fixed effects N, €stimate registry effects by year. Fig. 4 displays
the posterior means of n,;;, for the r[i] = 1, 2, 3 regions by year. We see that there is greater
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RR(81:84) / RR(85:91) < 0.975
RR(81:84) / RR(85:91) 0.975 - 1.025
RR(81:84) / RR(85:91) > 1.025

Fig. 2. Ratio of the ward level residual relative risks exp (v;) in 1981-1984 and 1985-1991:
boundaries before the amalgamation in 1985

, registry

variability before the amalgamation of the registries in 1985. In particular before 1985 the
relative risk in the southern registry is greater. Again, this is probably a reflection of the
greater ascertainment that apparently occurred in this region (see Fig. 1), rather than a true
elevated risk of breast cancer.

We may similarly investigate differences between DHAs by fitting the model

log(0;) = p + XiB8 + iy + apiye + Vi ®)
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Fig. 3 (a) Residual relative risk (RRR) estimates by ward in 1981-1984 versus estimates in 1985-1991; (b)
RRR estimates with adjustment for registry versus estimates with adjustment for registry and district; (c) RRR
estimates with adjustment for registry and district versus estimates from the proportional incidence binomial
model; (d) RRR estimates using census populations versus estimates using interpolated populations; (e) RRR
estimates using interpolated populations versus estimates using multinomial ward populations; (f) RRR estimates
using multinomial ward populations versus estimates using Dirichlet-multinomial ward populations; (g) RRR
estimates using Dirichlet-multinomial ward populations with prior variance proportional to 7500~" versus estim-
ates using Dirichlet-multinomial ward populations with prior variance proportional to 3750~
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Fig. 4. Registry effects (with 95% interval estimates) for the study period (the registries were amalgamated at
the beginning of 1985): A, North East Thames region; @, North West Thames region; ll, South Thames region

with DHA effects ¢4, ~up N(0, 07). We choose to model the DHA effects as random effects
because some of these contain sparse data and so benefit from being smoothed to the overall
mean. Fig. 3(b) shows the residual ward level relative risk estimates exp(v;) from the model
with registry effects (7) plotted against the estimates from the model with registry and district
effects (8). The agreement between these two sets indicates that the dominant contribution to
the relative risk is made, as we would expect, by the registry effects. The range of the residual
relative risks is narrower after district effects have been added since we have accounted for

slightly more of the variability. The posterior medians of o, for the preamalgamation years
t=1981, ..., 1984 are given by

0.09,0.09,0.08,0.12,
whereas for the post-amalgamation years t = 1985, . . ., 1991 they are given by
0.05,0.05,0.03, 0.06, 0.08, 0.04, 0.04,

and so we see that the variability narrows following amalgamation, suggesting that cancer
registration procedures became more homogeneous after 1984.

We now describe a second approach that follows more closely the method of Swerdlow and
dos Santos Silva (1983); see also Breslow and Day (1987). Following the notation for the
breast cancer counts, let Z,,, denote the number of cases of all other cancers (excluding cancer
of the uterus and ovary for reasons given later) in area i, age band ¢ and year . We consider
the model

Yiu 7y, Poisson {N,, exp(v,, + X;8 + 1y + Gape + 01))
and
Ziar ;]\f) Poisson {Niat eXp(’Y;r + Aflﬂ, + nr[i]r + ¢d[i]r + Uz,)}

Hence we have assumed that the stratum- (age—year) and area-specific risks differ for breast
cancer versus all other cancers combined (via the v and 4 fixed effects, and the v and v’
random effects respectively) but the registry and DHA effects are the same across all tumour
sites combined and for breast cancer. This assumption deserves some discussion; the
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proportion of underascertainment will be related to the proportion of DCO cases but the
relationship is not likely to be constant across tumour sites since the mortality-to-incidence
ratio is not constant across sites. For example, for lung cancer, survival is very poor and so if
all cases were registered as DCO cases the underascertainment would be small. This contrasts
with breast cancer for which long-term survival is approximately 50% (see Fig. 1) and so
if all cases were registered as DCO cases the underascertainment would be greater than for
lung cancer since many cases would die from other causes which may lead to the registry’s
not being notified and the case would be lost. Hence the assumption depends critically on
whether the proportions of DCO cases for all tumour sites other than breast (and uterus and
ovarian) are consistent across the registries and DHAs, relative to the proportion for breast
cancer. Obviously it would be preferable to obtain information on these proportions from the
registries, but unfortunately such information is not available to us.
We now condition on the total cancers as the denominator to give
Yiul Yie + Ziay 7, binomial( Yy, + Zi, Rigy) ©)

at p

where
lOgit(Ria/) = ’th + Xzﬂ* + U;k,

and ¥ = ~,, — 7., is the difference in stratum risks, 7= v; — v} is the difference in area effects
for breast cancer versus other cancers and 3* = 3 — 3’ measures the difference between the
effects of the Carstairs deprivation measure on breast cancer versus all other cancers. This
approach therefore eliminates the denominator and registry or DHA problems, the latter
under the assumption that the underascertainment across all other cancer sites combined is
the same as for breast cancer. The interpretation of the v} is of the difference in unobserved
risk factors acting on breast versus all other cancers within a registry. This interpretation
indicates why we excluded cancer of the uterus and ovary from the control group since these
are thought to have a similar aetiology to breast cancer. A computational disadvantage of
this approach is that the incidence of breast cancer relative to all cancers is no longer small
and so we cannot approximate model (9) by a Poisson distribution which would allow us to
combine cases across the stratum. A further difficulty is that this approach cannot, in general,
be followed if it is an ecological study that is being carried out. This is because it is 3 — 3 that
is being estimated and not (3; the latter can only be estimated if knowledge of 3 is available.
Fig. 3(c) displays the residual ward level relative risk estimates obtained from the Poisson
model with registry and district effects versus the corresponding odds ratio estimates from the
proportional binomial model just described. The odds ratios exp(v¥) correspond to

odds of breast cancer versus all other cancers in ward i

average odds of breast cancer versus all other cancers across the Thames region

The Poisson and binomial models are modelling different quantities (the residual relative
risk and residual odds ratio respectively) and so the estimates are not directly comparable
(although the rank ordering should be unaffected). The strength of the agreement is en-
couraging as it suggests that both models are, at least to some extent, accounting for
underascertainment.

4.2. Population counts
In this section we shall always include registry and DHA effects, i.e. model (8) is our starting
point. Recall that the N,, are the ‘true’ population counts at ward level. In what follows we
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shall treat the census estimates as the true counts and consider three models of increasing
complexity for the intercensual years. For notational convenience we consider a single LAD,
at which the Registrar General’s counts are available, without introducing a further sub-
script. We let N, t = 1982, . . ., 1990, denote the Registrar General’s set of mid-year counts
for this LAD which is assumed to contain / wards. Let 7;,, denote the true proportion of the
stratum « population contained in the LAD that is in ward i/ and year ¢.

4.2.1. Model A
The first model that we consider assumes that the apportionment probabilities are known. In
the years of the census (years ¢ = 1981, 1991) we obtain m,, = N,,/N,,, directly from the
census. For intercensual years we propose the simple logistic interpolation

logit(ﬂ-ial) = bia + Cial’ (10)

for t = 1982, . . ., 1990. We then take N,,, = N, 7;,-

4.2.2. Model B
We now acknowledge the sampling variability of the counts within an LAD via the multi-
nomial model:

N1a17 e Nlur|7rat ~ muuinomial[(NJrata ’/Tat) (1 1)

T
where 7, = (T4 « « s M) -

4.2.3. Model C
We finally account for the uncertainty in the apportionment probabilitics by assuming a
Dirichlet prior distribution for 7,,:

(Wlat: LY ﬂ—lat)|qatasttt ~ DiriCh]etI(sarqlata L) Sat‘]lat) (12)

where ¢, = (¢1u» - - - Gr)" is the mean of this distribution, which we take to be the inter-
polated probabilities, i.e.

eXp(bin + Ciq t)

—_— 1
1 + exp(bi + Ci{lt) ( 3)

E(Triat|qata Szzl) =Yiu =

The variance is given by

qmr(l B qiar)
V'dI'(?T,-a |Qa Y ) =
e ' Sar + 1

and so s, controls the (inverse) variance of the prior.
This model leads to a Dirichlet-multinomial marginal distribution for the true counts
which has mean

E(Nim |Qala Sal) = N+mqial
and variance

N+m + Sar

Var(N i Gars Sa) = Niaial = Giar) 1+
at
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So, for each year and for each LAD and age group, the ward populations follow an over-
dispersed multinomial distribution, with the overdispersion occurring because we do not
know the underlying ward apportionment probabilities but we assume that they follow a
Dirichlet distribution.

We now describe how the parameters s, were chosen. From the 1991 census there is
information at ward level on migration within the previous year which we can use to obtain
an estimate of each of the ward level populations in 1990. These estimates provide a new set
of apportionment probabilities for each ward in 1990, denoted gj49. We had to take
G990 = Ghgoo for all a since the census migration data are not available by age strata. We
therefore also recalculated interpolated proportions at ward level, i.e. g;999, analogous to
those in equation (13), and assumed s, = s, for all a. Following model (12)—(13), we assumed
a Dirichlet prior for w999 = (7] 19905 - - - 77,,,990)T with expectation taken as the interpolated
values ¢;1990- Marginally, each apportionment probability then has a beta distribution

119901919905 S1990 ~ Deta{$1990¢11990» S1990(1 — Gi1990)}- (14)

For various choices of 5,99, We constructed 95% intervals from the marginal distributions (14)
for each ward. We then chose 5,999 S0 that approximately 95% of these intervals for ;99
contain ¢; . . Following this procedure gave 5,999 = 7500.

To reflect the fact that errors will increase the further that we move from the census we would
expect s, to be a decreasing function of distance from the nearest census. Unfortunately we do
not have data to inform a possible form for this relationship; hence we take s, = 5,99, for
t =1982, ..., 1989. We acknowledge that this process is not rigorous but it is consistent with
our aim of addressing the sensitivity of inference to inaccuracies in the counts.

Fig. 5 shows a graphical representation of the final Poisson model including district and
registry effects to adjust for case under-registration and uncertain apportionment prob-
abilities to adjust for errors in the population counts. This directed acyclic graph (DAG)
illustrates the relationship between the elements of the model, in particular the conditional
independences. Oval nodes represent random variables (whether observed or not), rectangular
nodes fixed quantities, and logical dependences are shown as broken arrows; see Spiegelhalter
(1998) for an introduction to, and application of, DAGs.

Since the expected counts are a function of the N,,, we would ideally allow these to be
random in the full probability model (as represented in Fig. 5) and thus allow feed-back
from the Poisson portion of the model. Unfortunately this model is very computationally
expensive to implement and so we instead make the following simplifications. We carry out a
separate analysis of the counts data and obtain a sample from the posterior distribution of
the N,,, which we then use within the analysis of the health data. This approximation has the
flavour of a multiple-imputation scheme and does not allow feed-back from the Poisson
likelihood for Y;, to inform the estimation of N,

at*

4.3. Comparisons
In each of the following analyses we consider the model (3)—(5), (8) and first assess how
sensitive the ward level residual risks are to the models that we have just described.

Fig. 3(d) compares the use of expected counts based on census populations with an abrupt
jump in the year 1985 with those based on populations which are smoothly interpolated via
equation (10), i.e. model A. We see that there is very little change in the estimates. We examined
the expected counts that result from each approach and found that the differences between
these and the observed counts were symmetrically distributed and predominantly lay within +0.3.
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Fig. 5. Directed acyclic graph representation of the final Poisson disease mapping model incorporating registry

and district effects and errors in the population denominators

Figs 3(e) and 3(f) compare models A and B and models B and C respectively. Again we see
that, in terms of the residual relative risks at least, there are only small differences between the
models. As a final check on the sensitivity, we increase the prior variance on m,, by replacing
s, = 7500 by s, = 3750. Fig. 3(g) compares the residual relative risk estimates under the two
priors and shows that they remain virtually unchanged. We also examined maps of the

standard errors of the residual relative risks and found them to be virtually unchanged across

the various analyses.

Fig. 6 shows the effect of the various models on the regression parameter measuring the
effect of the Carstairs deprivation score. The relative risk that is plotted represents the ratio
of risk in an affluent ward (fifth percentile of scores across the region) versus the risk in a
deprived ward (95th percentile). Ignoring the rightmost point for the moment we see that each
of the estimates are greater than 1, indicating that within affluent wards the risk is greater, in
line with previous observations (e.g. Henderson et al. (1996)). This relationship is largely due

to reproductive risk factors; for example early pregnancy is thought to be protective. Fig. 6
shows a clear difference in the estimates based on the pre- and post-1985 data; when all years
are combined, progressive refinements to the model lead to increases in both the magnitude
and the uncertainty of the deprivation effect. The rightmost point in Fig. 6 shows the relative
risk for the odds ratio model (9). This estimate represents the difference in the deprivation
effect for breast cancer and for all other cancers. Since for most cancers greater deprivation
leads to an increased risk (Jolley et al., 1992) we see a large positive estimate (since 3 is large

and negative).
Fig. 6 shows the ‘attenuation to the null’ effect that is well known in covariate
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Fig. 6. Regression parameter measuring effect of the Carstairs deprivation score for each model: the quantities
plotted are the point estimate and the 95% credible interval for exp{3(Xs,, — X5, )}, i.€. the estimated relative risk
of breast cancer in an affluent ward (5th percentile of the Carstairs score) versus a deprived ward (95th percentile
of the Carstairs score)

measurement error models (e.g. Carroll et al. (1995)). However, with the complex model
considered here there is no reason why errors in case and population counts will lead to
attenuation in general.

We finally carried out an analysis using the most complex model but allowing a separate
relative risk parameter exp(v;), j = 1,2, for each of the periods 1981-1984 and 1985-1991.
Fig. 7 shows the ratio of the resulting posterior means of the relative risk estimates in each
period by ward. A comparison with Fig. 2 shows that the systematic predominance of ratios
less than 1 in the north and greater than 1 in the south has been largely eliminated, suggesting
that the lack of agreement in the initial analysis was at least partly due to inaccuracies in the
data.

5. Spatial dependence

As stated in Section 3, we would, in general, expect to see spatial dependence in the residual
relative risks. To address this issue we attempted to refit the models described in Sections 3
and 4, but allowing for spatially correlated random effects. We utilized model (3)—(5) but with
equation (6) replaced by

log(0;) = p, + Xi6 + v; + u;, (15)

with v; ~;p N(0, 03) and with an intrinsic conditional autoregressive prior for the spatial
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RR(81:84) / RR(85:91) 0.975 - 1.025

ﬁ RR(81:84) / RR(85:91) < 0.975
RR(81:84) / RR(85:91) > 1.025

Fig. 7. Ratio of the ward level relative risks in 1981-1984 and 1985-1991 estimated from the final model
incorporating registry and district effects and errors in the population denominators: , registry boundaries
before the amalgamation in 1985

random effects u;. Specifically we take u;|u;, j # i ~ N(u, Wl /n;), where i; denotes the mean
of the neighbouring wards, where a neighbour is defined to share a common boundary with
area I, and n; denotes the number of neighbours of ward i. Besag et al. (1991) advocated the
use of this model. The parameter w> represents the conditional variance of the spatial random
effects and is therefore not directly comparable with o?.

Unfortunately, when we attempted to fit this model including registry effects 7,;;,, we
encountered difficulties since the spatial random effects and the registry effects appeared to be
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confounded. To overcome this, we eliminated the need for registry main effects in the linear
predictor by obtaining age- and year-specific reference rates separately for each registry and
by using these to form the expected numbers. The reference rates are displayed in Fig. 8.
As expected, the northern registry rates are lower than the southern rates before the
amalgamation in 1985, which we believe represents case underascertainment in the north.
This pattern occurs consistently across all age groups apart from the eldest, but the rates for
this group are estimated from small numbers and hence have large sampling variability. The
effect of the introduction of breast cancer screening in 1989 is evident in the increased
incidence in the 50-60-year-old people from this year onwards.

Using the registry-adjusted expected numbers we refitted the basic model (3)—(5) for each
time period (1981-1984 or 1985-1991) with either non-spatial random effects (6) or both
unstructured and spatial random effects (15). The posterior means of the relative risks from
the model with spatial random effects are plotted against their counterparts from the non-
spatial model for the corresponding time period in Fig. 9. We see that there are some
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Fig. 8. Registry-specific reference rates (per 1000) by year and age group (— —, North East Thames region;

----- , North West Thames region; , South Thames region): (a) 1981; (b) 1982; (c) 1983; (d) 1984; (e)
1985; (f) 1986; (g) 1987; (h) 1988; (i) 1989; (j) 1990; (k) 1991
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Fig. 9. Posterior means of relative risk parameters obtained from analyses with and without spatial random
effects, for the two time periods corresponding to preamalgamation and post-amalgamation

differences, but qualitatively the estimates are in agreement. The posterior means of the
regression coefficients § are virtually unchanged when spatial effects are added and the
posterior standard deviations were increased slightly. In the non-spatial model the posterior
medians of ¢, are 0.15 and 0.10 in the first and second time periods respectively. When the
spatial components are added, as expected these standard deviations reduce to 0.10 and 0.07.
The empirical standard deviations of the spatial random effects u; were 0.10 and 0.07,
indicating that there is some spatial dependence in these data.
When we added in DHA effects to the spatial model, the posterior medians of o, were

0.07, 0.07, 0.05, 0.10,
for the preamalgamation period, and
0.04, 0.03, 0.02, 0.05, 0.06, 0.03, 0.04,

for the post-amalgamation period. A comparison with the equivalent parameters in the non-
spatial model shows that these parameters are slightly reduced. This could be because we
have now adjusted for the registry effects more subtly; we no longer have a single registry-
specific adjustment but we allow the reference rates to be estimated separately for each age
group. When the DHA effects were added the spatial effects were reduced; the empirical
standard deviation of the spatial effects was 0.05 whereas the posterior median of o, was 0.08.
Again the posterior distribution of § was very similar to that for the equivalent non-spatial
analysis.

6. Discussion

In Section 5 we presented an alternative approach to account for registry effects by using a
separate set of reference rates for each registry. This would be beneficial in the non-spatial
analysis also since it allows for more flexible modelling of registry effects by enabling them to
vary across different age groups. We could also follow this approach at the district level,
though the sparsity of cases per district would lead to very unstable estimates. In this case the
rates could be smoothed across districts by modelling the rates as random effects, and also
smoothed across age groups by using a first-order autoregressive prior (e.g. Clayton (1996)).

When modelling the population counts we have assumed that the census and Registrar
General’s counts are exact, which is clearly not so. It would be straightforward also to
assume that these quantities were measured with error, but again, without knowing anything
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about the size of the measurement error, we would be essentially carrying out a sensitivity
analysis. There are several sources of information that could inform the size of these errors,
e.g. local population registries and the ‘Estimating with confidence’ project (Simpson et al.,
1995). In particular the latter found that inaccuracies were greatest in areas that were
deprived, contained a relatively young population and contained an ethnically mixed pop-
ulation. As an alternative to modelling the population counts we could take an errors-in-
variables approach to modelling the expected counts directly. This approach has the
advantage of being more straightforward computationally but it is much more difficult to
input prior information concerning the size of the errors in a specific stratum.
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